
Connection Diagram
PDIP and SOIC

(top view)

VDD VSS

Since the 1996 model year, North American
automobiles have been required to provide an OBD,
or On Board Diagnostics, port for the connection of
test equipment. Data is transferred serially between
the vehicle and the external equipment using this
connection, in a manner specified by the Society of
Automotive Engineers (SAE) standards. In addition
to operating at different voltage levels, these ports
also use a data format that is not compatible with the
standard used for personal computers.

The ELM322 is an 8 pin integrated circuit that is
able to change the data rate and reformat the OBD
signals into easily recognized ASCII characters. This
allows virtually any personal computer to
communicate with an OBD equipped vehicle using
only a standard serial port and a terminal program.
By also enhancing it with an interface program,
hobbyists can create their own custom scan tool.

This integrated circuit was designed to provide a
cost-effective way for experimenters to work with an
OBD system, so a few features such as RS232
handshaking, variable baud rates, etc., have not
been implemented. In addition, this device is only
able to communicate using the 10.4KHz J1850 VPW
protocol that is commonly used in General Motors
and some Daimler Chrysler vehicles.

• Low power CMOS design

• High current drive outputs

• Crystal controlled for accuracy

• Fully configurable using AT commands

• Standard ASCII character output

• High speed RS232 communications

• 10.4 KHz J1850 VPW protocol

• Diagnostic trouble code readers

• Automotive scan tools

OBDOut

Tx

Description

Applications

Block Diagram

Features

OBDIn Rx

1

2

3

8

7

6

54

XT1

XT2

Tx
RS232

Interface

3.58 MHz

2 3
XT1 XT2

Rx 5

6

Timing and
Control

Interpreter
OBD

Interface
OBDOut

4

7

OBDIn

Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

OBD (VPW) to RS232 Interpreter

1 of 18ELM322DSF

ELM322

Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Pin Descriptions

Ordering Information

These integrated circuits are available in either the 300 mil plastic DIP format, or in the 208 mil SOIC surface
mount type of package. To order, add the appropriate suffix to the part number:

300 mil Plastic DIP............................... ELM322P 208 mil SOIC..................................... ELM322SM

2 of 18

All rights reserved. Copyright 2001 to 2009 by Elm Electronics Inc.
Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be
given and no liability assumed by Elm Electronics with respect to the accuracy and/or use of any products or information
described in this document. Elm Electronics will not be responsible for any patent infringements arising from the use of these
products or information, and does not authorize or warrant the use of any Elm Electronics product in life support devices and/or
systems. Elm Electronics reserves the right to make changes to the device(s) described in this document in order to improve
reliability, function, or design.

VDD (pin 1)

This pin is the positive supply pin, and should
always be the most positive point in the circuit.
Internal circuitry connected to this pin is used to
provide power on reset of the microprocessor, so
an external reset signal is not required. Refer to
the Electrical Characteristics section for further
information.

XT1 (pin 2) and XT2 (pin 3)

A 3.579545 MHz NTSC television colourburst
crystal is connected between these two pins.
Crystal loading capacitors (typically 27pF) will
also normally be connected between each of the
pins and the circuit common (Vss).

OBDIn (pin 4)

The OBD data is input to this pin, with a low logic
level representing the active state (and a high,
the passive). No Schmitt trigger input is
provided, so the OBD signal should be buffered
to minimize transition times for the internal
CMOS circuitry. The external level shifting
circuitry is usually sufficient to accomplish this -
refer to the Example Applications section for a
typical circuit.

Rx (pin 5)

The computer’s RS232 transmit signal can be
directly connected to this pin from the RS232
line, as long as a current limiting resistor
(typically about 47KΩ) is installed in series.
(Internal protection diodes will pass the input
currents safely to the supply connections,
protecting the ELM322.) Internal signal inversion
and Schmitt trigger waveshaping provide the
necessary signal conditioning.

Tx (pin 6)

The RS232 data output pin. The signal level is
compatible with most interface ICs, and there is
sufficient current drive to allow interfacing using
only a single PNP transistor, if desired.

OBDOut (pin 7)

This is the active low output signal which is used
to drive the OBD bus to the active (high) state.
Typically this is accomplished by switching a PNP
type transistor on - see the Example Applications
section for more details.

VSS (pin 8)

Circuit common is connected to this pin. This is
the most negative point in the circuit.

ELM322DSF

ELM322

Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Electrical Characteristics

Absolute Maximum Ratings

Storage Temperature....................... -65°C to +150°C

Ambient Temperature with
Power Applied....................................-40°C to +85°C

Voltage on VDD with respect to VSS............ 0 to +7.5V

Voltage on any other pin with
respect to VSS........................... -0.6V to (VDD + 0.6V)

Note:

Stresses beyond those listed here will likely damage
the device. These values are given as a design
guideline only. The ability to operate to these levels
is neither inferred nor recommended.

3 of 18

All values are for operation at 25°C and a 5V supply, unless otherwise noted. For further information, refer to note 1 below.

Characteristic Minimum Typical Maximum ConditionsUnits

Supply voltage, VDD 4.5 5.0 5.5 V

VDD rate of rise 0.05 V/ms

Average supply current, IDD 1.0 2.4 mA

Notes:
1. This integrated circuit is produced with a Microchip Technology Inc.’s PIC12C509A as the core embedded

microcontroller. For further device specifications, and possibly clarification of those given, please refer to the
appropriate Microchip documentation (available at http://www.microchip.com/).

2. This spec must be met in order to ensure that a correct power on reset occurs. It is quite easily achieved
using most common types of supplies, but may be violated if one uses a slowly varying supply voltage, as
may be obtained through direct connection to solar cells, or some charge pump circuits.

3. Device only. Does not include any load currents.

4. This specification represents the current flowing through the internal protection diodes when the voltage
connected to the Rx input (through a current limiting resistance) is greater than VDD or less than VSS.
Currents quoted are the maximum that should be allowed to flow continuously.

5. Nominal data transfer rate when a 3.58 MHz crystal is used as the frequency reference. Data is transferred
to and from the ELM322 with 8 data bits, no parity, and 1 stop bit (8 N 1).

Input low voltage VSS 0.15 VDD V

Input high voltage VDD V0.85 VDD

Output low voltage 0.6 V

Output high voltage VVDD - 0.7

Current (sink) = 8.7 mA

Current (source) = 5.4 mA

see note 2

ELM322DSF

see note 3

Rx pin input current mA see note 4-0.5

RS232 baud rate baud see note 59600

+0.5

ELM322

4 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Overview

The ELM322 relies on a standard RS232 type
serial connection to communicate with the user. The
data rate is fixed at 9600 baud, with 8 data bits, no
parity bit, 1 stop bit, and no handshaking (often
referred to as 9600 8N1). All responses from the IC
are terminated with a single carriage return character
and, by default, a line feed character as well. Make
sure your software is configured properly for the mode
you have chosen.

Properly connected and powered, the ELM322 will
initially display the message:

ELM322 v2.0

>

In addition to identifying the version of the IC,
receipt of this string is a convenient way to be sure
that the computer connections and the settings are
correct. However, at this point no communications
have taken place with the vehicle, so the state of the
OBD connection is still unknown.

The ‘>’ character displayed above is the ELM322’s
prompt character. It indicates that the device is in its
idle state, ready to receive characters on the RS232
port. Characters sent from the computer can either be
intended for the ELM322’s internal use, or for
reformatting and passing on to the vehicle’s OBD bus.

Commands for the ELM322 are distinguished from
those to the vehicle by always beginning with the
characters ‘AT’ (as is common with modems), while
commands for the OBD bus can contain only the
ASCII characters for hexadecimal digits (0 to 9 and A
to F). This allows the ELM322 to quickly determine
where the received characters are to be directed.

Whether an ‘AT’ type internal command or a hex
string for the OBD bus, all messages to the ELM322
must be terminated with a carriage return character

(hex ‘0D’) before they will be acted upon. If an
incomplete string is sent and no carriage return
appears, an internal timer will automatically abort the
incomplete message after about 10 seconds. Should
this happen, the ELM322 will print a single question
mark to show that the input was not understood (and
was ignored).

Messages that are misunderstood by the ELM322
(syntax errors) will always be signalled by a single
question mark (‘?’). These include incomplete
messages, invalid hexadecimal digit strings, or
incorrect AT commands. It is not an indication of
whether or not the message was understood by the
vehicle. (The ELM322 is a protocol interpreter that
makes no attempt to assess OBD messages for
validity – it only ensures that an even number of hex
digits were received, combined into bytes, and sent
out the OBD port, so it cannot determine if the
message sent to the vehicle is in error.)

Incomplete or misunderstood messages can also
occur if the controlling computer attempts to write to
the ELM322 before it is ready to accept the next
command (as there are no handshaking signals to
control the data flow). To avoid a data overrun, users
should always wait for the prompt character (‘>’)
before issuing the next command.

Finally, a few convenience items to note. The
ELM322 is not case-sensitive, so ‘ATZ’ is equivalent to
‘atz’, and to ‘AtZ’. The device ignores space characters
as well as control characters (tab, linefeed, etc.) in the
input, so they can be inserted anywhere to improve
readability, and finally, issuing only a single carriage
return character will repeat the last command (making
it easier to request updates on dynamic data such as
engine rpm).

Communicating with the ELM322

The following describes how to use the ELM322 to
obtain a great deal of information from your vehicle. To
some, the quantity of information will be overwhelming,
and for others it will not be enough.

We begin by discussing just how to talk to the IC,
then how to adjust some options through the use of
‘AT’ commands, and finally go on to actually talk to the
vehicle, obtaining trouble codes and resetting them.
For the more advanced experimenters, there are also
sections on how to use some of the programmable

features of this product as well.
It is not as daunting as it first appears. Many users

will never need to issue an ‘AT’ command, adjust
timeouts or change the headers. For most, all that is
required is a PC or a PDA with a terminal program
(such as HyperTerminal or ZTerm), and knowledge of
one or two OBD commands, which we provide in the
following…

ELM322

5 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

AT Commands

Several parameters within the ELM322 can be
adjusted in order to modify its behaviour. These do not
normally have to be changed before attempting to talk
to the vehicle, but occasionally the user may wish to
customize the settings, for example by turning the
character echo off, adjusting the timeout value, or
changing the header addresses. In order to do this,
internal ‘AT’ commands must be issued.

Those familiar with PC modems will immediately
recognize AT commands as a standard way in which
modems are internally configured. The ELM322 uses
essentially the same method, always watching the
data sent by the PC, looking for messages that begin
with the character ‘A’ followed by the character ‘T’. If
found, the next characters will be interpreted as
internal configuration or ‘AT’ commands, and will be
executed upon receipt of a terminating carriage return
character. The ELM322 will reply with the characters

‘OK’ on the successful completion of a command, so
the user knows that it has been executed.

Some of the following commands allow the
passing of numbers as arguments in order to set the
internal values. These numbers will always be in
hexadecimal format, and must be provided in pairs.
The hexadecimal conversion chart in the next section
may prove useful if you wish to interpret the values.
Also, one should be aware that for the on/off types of
commands, the second character will be either the
number 1 or 0, the universal terms for on and off.

The following is a summary of all of the AT
commands that are recognized by the current version
of the ELM322, sorted alphabetically. Users of
previous versions of this product (v1.x) should note
that their ICs will only support the E, H and Z options.

AR [Automatically set the Receive address]

Responses from the vehicle will be acknowledged
and displayed by the ELM322, if its internally stored
receive address matches the address that the
message is being sent to. With the Auto Receive
mode in effect, the value used for the receive
address will be chosen based on the current header
bytes, and will automatically be updated whenever
the header bytes are changed.

The value that is used for the receive address is
determined based on the contents of the first header
byte. If it shows that the message uses physical
addressing, the third byte of the header is used for
the receive address, otherwise (for functional
addressing) the second header byte, increased in
value by 1, will be used. Auto Receive is turned on
by default.

D [set all to Defaults]

This command is used to set the E, H, L, and R
options to their default (or factory) settings, as when
power is first applied. Additionally, the Auto Receive
mode (AR) will be selected, data will be transmitted
in the standard formatted way (as if chosen by FD),
the ‘NO DATA’ timeout will be set to its default value,
and the header bytes will be set to the proper values
for OBDII (SAE J1979) operation.

E0 and E1 [Echo off (0) or on (1)]

These commands control whether or not characters
received on the RS232 port are retransmitted (or
echoed) back to the host computer. To reduce traffic
on the RS232 bus, users may wish to turn echoing
off by issuing ATE0. The default is E1 (echo on).

FD [send Formatted Data]

This command requests that all responses be
returned as standard ASCII characters, which are
readable with virtually any terminal program. Hex
digits are shown as two ASCII characters, and
spaces are provided between each byte as a
separator. Also, every line will end with a carriage
return character and (optionally) a linefeed
character, ensuring that every response appears on
a new line. This is the default mode.

H0 and H1 [Headers off (0) or on (1)]

These commands control whether or not the header
information is shown in the responses. All OBD
messages have an initial (header) string of three
bytes and a trailing check digit which are normally
not displayed by the ELM322. To see this extra
information, users can turn the headers on by
issuing an ATH1. The default is H0 (headers off).

ELM322

6 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

AT Commands (continued)

I [Identify yourself]

Issuing this command causes the chip to identify
itself, by printing the startup product ID string (this is
currently ‘ELM322 v2.0’). Software can use this to
determine exactly which integrated circuit it is talking
to, without resorting to resetting the entire IC.

L0 and L1 [Linefeeds off (0) or on (1)]

Whether or not the ELM322 transmits a linefeed
character after each carriage return character is
controlled by this option. If an ATL1 is issued,
linefeed generation will be turned on, and for ATL0, it
will be off. Users may wish to have this option on if
using a terminal program, but off if using a custom
interface (as the extra characters transmitted will
only serve to slow the vehicle polling down). The
default setting is L1 (linefeeds on).

MA [Monitor All messages]

Using this command places the ELM322 into a bus
monitoring mode, in which it displays all messages
as it sees them on the OBD bus. This continues
indefinitely until stopped by activity on the RS232
input. To stop the monitoring, one should send any
single character then wait for the ELM322 to respond
with a prompt character (‘>’). Waiting for the prompt
is necessary as the response time is unpredictable,
varying depending on what the IC was doing when
interrupted. If for instance it is in the middle of
printing a line, it will first complete the line then
return to the command state, issuing the prompt
character. If it was simply waiting for input, it would
return immediately. The character which stops the
monitoring will always be discarded, and will not
affect subsequent commands.

MR hh [Monitor for Receiver hh]

This command also places the IC in a bus monitoring
mode, displaying only messages that were sent to
the hex address given by hh (messages which are
found to have that value in their second byte). Any
RS232 activity (single character) aborts the
monitoring, as with the MA command.

MT hh [Monitor for Transmitter hh]

Another monitoring command, MT hh displays only
messages sent by Transmitter address hh (given by

the third byte in the message). As with the MA and
MR monitoring modes, any RS232 activity (single
character) will abort the monitoring.

PD [send Packed Data]

This option is for those who are building a computer
interface and want the fastest data transfer rate
possible while still operating at 9600 baud. When
selected, responses from the vehicle will be
formatted as an initial length byte followed by the
actual response bytes from the vehicle, with no
trailing carriage returns or linefeed characters. The
data will not be altered in any way, except for the
conversion to standard RS232 bytes.

Note that the length byte only represents the total
number of data bytes following, and does not include
itself. Also, if there was a data (checksum) error, the
length byte will have its most significant bit set, so
the user should always check first to see if the length
is greater than 127. (The other 7 bits still provide a
valid byte count if there is an error, so one need only
ignore the msb, or subtract 128 from the value.)

A ‘NO DATA’ response has no data bytes, but still
sends a length byte with value ‘0’.

R0 and R1 [Responses off (0) or on (1)]

These commands control the ELM322’s automatic
display of responses. If responses have been turned
off, the IC will not wait for anything to be returned
from the vehicle after sending a request, and will
return immediately to waiting for RS232 commands.
This is useful if sending commands blindly when
using the IC for a non-OBD network application, or
simulating an ECU in a basic learning environment.
The default is R1 (responses on).

SH xx yy zz [Set the Header to xx yy zz]

This command allows the user to control the values
that are sent as the three header bytes in the
message. The value of hex digits xx will be used for
the first or priority/type byte, yy will be used for the
second or target byte, and zz will be used for the
third or source byte. These remain in effect until set
again, or until restored to the default values with the
AT D, or AT Z commands. The default header values
are 68 6A F1, as required by the SAE J1979
Diagnostic Test Modes (OBDII) standard.

ELM322

7 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

AT Commands (continued)

ELM322 AT Commands

general

responses

requests

set all to DefaultsD
show the ID stringI
reset allZ

repeat last command<CR>

Echo on/offE1/0
Headers on/offH1/0
Linefeeds on/offL1/0
Responses on/offR1/0

ST hh Set Timeout (hh*4ms)

SH xx yy zz Set Header
SR hh Set Rx address
AR Auto Receive
MA Monitor All
MR hh Monitor for Rxer hh

use Packed DataPD
use Formatted DataFD

MT hh Monitor for Txer hh

SR hh [Set the Receive address to hh]

Depending on the application, users may wish to
manually set the address to which the ELM322 will
respond. Issuing this command will turn off the AR
mode, and force the IC to only accept responses
addressed to hh. This could be useful in non-OBD
applications, or simply while experimenting with a
network.

ST hh [Set Timeout to hh]

After sending a request, the ELM322 waits a preset
time before declaring that there was no response
from the vehicle (the ‘NO DATA’ response).
Depending on the application (and priority of the
request), users may want to modify this timeout
period before the ELM322 declares that the request
was a failure. The ST command is used to do that.

The actual time used is (approximately) 4 ms x the
byte value passed as the hexadecimal argument.
Passing a value of FF thus results in a maximum
time of about 1020 ms. Values less than 08 will be
ignored and forced to a value of 8, providing a
minimum time of 32 ms. The default value is 32
(decimal 50) providing a timeout of 200 ms.

Z [reset all]

This command causes the chip to perform a
complete reset, as if power were cycled off and then
on again. All settings are returned to their default
values, and the chip will be put in the idle state,
waiting for characters on the RS232 bus.

AT Command Summary
Figure 1 (at the right) shows all of the ELM322
commands in one convenient chart. In order to help
with the understanding of these, we have grouped
the commands into three functional areas, but this
has no bearing on how the commands should be
used, it is only for clarity. You may find this chart to
be useful when experimenting with the IC.

Figure 1. ELM322 AT Commands

ELM322

If the bytes received on the RS232 bus do not
begin with the letters A and T, they are assumed to be
commands for the vehicle’s OBD bus. The bytes will
be tested to ensure that they are valid pairs of
hexadecimal digits and, if they are, will be combined
into bytes for transmitting to the vehicle. Recall that no
checks are made as to the validity of the OBD
command – data is simply retransmitted as received.

OBD commands are actually sent to the vehicle
embedded within a data message. The J1979
standard requires that every message begin with three
header bytes followed by the data bytes, and finally be
terminated with a checksum byte, but the ELM322
takes care of this formatting for you. It powers on
expecting to be used for OBDII mandated emissions
diagnostics, so knows the values necessary for the
header bytes, sets them accordingly, and simply has
to insert the user’s data. If you wish to experiment with
some of the more advanced functions, the values used
for the header bytes may be changed with AT
commands, as discussed previously. To view these
extra bytes as they are received, you must turn the
header display on by issuing an ATH1 command.

The command portion of most OBD messages is
usually only one or two bytes in length, but can
occasionally be longer, as the standard allows for as
many as seven. The current version of the ELM322
will accept the maximum seven command bytes (or 14
hexadecimal digits) per message, while users of
previous versions (v1.x) were limited to only three
command bytes. In either case, attempts to send more
than the maximum number of bytes allowed will result
in a syntax error, with the entire command being
ignored and a single question mark printed.

The use of hexadecimal digits for all of the data
exchange was chosen as it is the most common data
format used in the relevant SAE standards. It is
consistent with mode request listings and is the most
frequently used format for displaying results. With a
little practice, it should not be very difficult to deal in
hex numbers, but some may initially find the table in
Figure 2 or a calculator to be invaluable. All users will
eventually be required to manipulate the results in
some way, though (combine bytes and divide by 4 to
obtain rpm, divide by 2 to obtain degrees of advance,
etc.), and may find a software front-end helpful.

As an example of sending a command to the
vehicle, assume that A6 (or decimal 166) is the
command that is required to be sent. In this case, the
user would type the letter A, then the number 6, then

would press the return key. These three characters
would be sent to the ELM322 on the RS232 bus. The
ELM322 would store the characters as they are
received, and when the third character (the carriage
return) is received, begin to assess the other two. It
would see that they are both valid hex digits, and
would convert them to a one byte value (with a
decimal value of 166). Three header bytes and a
checksum byte would be added, so a total of five bytes
would be sent to the vehicle. Note that the carriage
return character is only a signal to the ELM322, and is
not sent on to the vehicle.

After sending a command, the ELM322 listens to
the OBD bus for any responses that are directed to it.
Each received byte is converted to the equivalent
hexadecimal pair of ASCII characters and transmitted
on the RS232 port for the user. Rather than send
control characters which are unprintable on most
terminals, the digits are sent as numbers and letters
(e.g. the hex digit ‘A’ is transmitted as decimal value
65, and not 10).

If there was no response from the vehicle, due to
no data being available, or because the command is
not supported, a ‘NO DATA’ message will be sent. See
the Error Messages section for a description of this
message and others.

8 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

OBD Commands

Figure 2. Hex to Decimal Conversion

Hexadecimal
Number

Decimal
Equivalent

0
1

3
2

4
5
6

0
1

3
2

4
5
6

7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

ELM322

9 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Talking to the Vehicle

The ELM322 cannot be directly connected to a
vehicle as it is, but needs support circuitry as shown in
the Example Applications section. Once incorporated
into such a circuit, you only need to use a terminal
program to send bytes to, and receive them from, the
vehicle.

SAE standards specify that command bytes sent
to the vehicle must adhere to a set format. The first
byte (known as the ‘mode’) always describes the type
of data being requested, while the second, third, etc.
bytes specify the actual information required (given by
a ‘parameter identification’ or PID number). The
modes and PIDs are described in detail in the SAE
standard documents J1979 and J2190, and may also
be expanded on by the vehicle manufacturers.

Normally, one is only concerned with the nine
diagnostic test modes described in J1979 (although
there is provision for more). Note that it is not a
requirement for all of them to be supported. These are
the nine modes:

01 : show current data
02 : show freeze frame data
03 : show diagnostic trouble codes
04 : clear trouble codes and stored values
05 : test results, oxygen sensors
06 : test results, non-continuously monitored
07 : test results, continuously monitored
08 : special control mode
09 : request vehicle information

Within each mode, PID 00 is normally reserved to
show which PIDs are supported by that mode. Mode
01, PID 00 is required to be supported by all vehicles,
and can be accessed as follows…

Ensure that the ELM322 is properly connected to
your vehicle, and powered. Most vehicles will not
respond without the ignition key in the ON position, so
turn the ignition on, but do not start the vehicle. At the
prompt, issue the mode 01 PID 00 command:

>01 00

A typical response could be as follows:

41 00 BE 1F B8 10

The 41 00 signifies a response (4) from a mode 1
request with PID 00 (a mode 2, PID 00 request is
answered with a 42 00, etc.). The next four bytes (BE,
1F, B8, and 10) represent the requested data, in this
case a bit pattern showing which of PIDs 1 through 32
are supported by this mode (1=supported, 0=not).

Although this information is not very useful for the
casual user, it does serve to show that you are
communicating with the vehicle.

Another example requests the current engine
coolant temperature (ECT). This is PID 05 in mode 01,
and is requested as follows:

>01 05

The response will be of the form:

41 05 7B

This shows a mode 1 response (41) from PID 05,
with value 7B. Converting the hexadecimal 7B to
decimal, one gets 7 x 16 + 11 = 123. This represents
the current temperature in degrees Celsius, with the
zero value offset by 40 degrees to allow operation at
subzero temperatures. To convert to the actual coolant
temperature, simply subtract 40 from the value. In this
case, then, the ECT is 123 - 40 = 83 degrees Celsius.

A final example shows a request for the OBD
requirements to which this vehicle was designed. This
is PID 1C of mode 01, so at the prompt, type:

>01 1C

A typical response would be:

41 1C 01

The returned value (01) shows that this vehicle
conforms to OBDII (California ARB) standards. The
presently defined responses are:

01 : OBDII (California ARB)
02 : OBD (Federal EPA)
03 : OBD and OBDII
04 : OBD I
05 : not intended to meet any OBD requirements
06 : EOBD (Europe)

Some modes may provide multi-line responses
(09, if supported, can display the vehicle’s serial
number). The ELM322 will attempt to display all
responses in these cases, but only if it is allowed
sufficient time to process each. There may be
occasions when the vehicle responds too quickly to
allow time for reprocessing, and lines could be lost.

Hopefully this has shown how typical requests
proceed. It has not been meant to be a definitive
source on modes and PIDs – this information can be
obtained from the manufacturer of your vehicle, from
the SAE (www.sae.org), ISO (www.iso.org), or from
various other sources on the web.

ELM322

Interpreting Trouble Codes

10 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Likely the most common use that the ELM322 will
be put to is in obtaining the current Diagnostic Trouble
Codes or DTCs. Minimally, this requires that a mode
03 request be made, but first one should determine
how many trouble codes are presently stored. This is
done with a mode 01 PID 01 request as follows:

>01 01

To which a typical response might be:

41 01 81 07 65 04

The 41 01 signifies a response to our request, and
the first data byte (81) is the result that we are looking
for. Clearly there would not be 81(hex) or 129(decimal)
trouble codes if the vehicle is operational. In fact, this
byte does double duty, with the most significant bit
being used to indicate that the malfunction indicator
lamp (MIL, or ‘Check Engine’) has been turned on by
one of this module’s codes (if there are more than
one), while the other 7 bits provide the actual number
of stored codes. To determine the number of stored
codes, then, one needs to subtract 128 (or 80 hex)
from the number if it is greater than 128, and otherwise
simply read the number of stored codes directly.

The above response then indicates that there is
one stored code, and it was the one that set the MIL or
‘Check Engine’ lamp on. The remaining bytes in the
response provide information on the types of tests
supported by that particular module (see SAE
document J1979 for further information).

In this instance, there was only one line to the
response, but if there were codes stored in other
modules, they each could have provided a line of
response. To determine which module is reporting the
trouble code, one would have to turn the headers on
(ATH1) and then look at the third byte of the three byte
header for the address of the module that sent the
information.

Having determined the number of codes stored,
the next step is to request the actual trouble codes
with a mode 03 request:

>03

A response to this could be:

43 01 33 00 00 00 00

The ‘43’ in the above response simply indicates
that this is a response to a mode 03 request. The other
6 bytes in the response have to be read in pairs to
show the trouble codes (the above would be
interpreted as 0133, 0000, and 0000). Note that there

is only one trouble code here. The response has been
padded with 00’s as is required by the standard, and
the extra 0000’s do not represent actual trouble codes.

As was the case when requesting the number of
stored codes, the most significant bits of each trouble
code also contain additional information. It is easiest to
use the following table to interpret the first digit of a
trouble code as follows:

Powertrain Codes - SAE defined0

“ “ - manufacturer defined

“ “ - SAE defined

“ “ - jointly defined

1

2

3

If the first hex digit received is this,
Replace it with these two characters

Chassis Codes - SAE defined4

“ “ - reserved for future

5

6

7

Body Codes - SAE defined8

9

A

B

Network Codes - SAE definedC

D

E

F

P0

P1

P2

P3

C0

C1

C2

C3

B0

B1

B2

B3

U0

U1

U2

U3

“ “ - reserved for future

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - reserved for future

Taking the example trouble code (0133), the first
digit (0) would then be replaced with P0, and the 0133
reported would become P0133 (which is the code for
an ‘oxygen sensor circuit slow response’). As for
further examples, if the response had been D016, the
code would be interpreted as U1016, while 1131 would
be P1131.

Had there been codes stored by more than one
module, or more than three codes stored in the same
module, the above response would have consisted of
multiple lines. To determine which module is reporting
each trouble would then require turning the headers on
with an ATH1 command.

ELM322

Error Messages

11 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Resetting Trouble Codes

When problems occur, the ELM322 will respond
with one of the following short messages. Here is a
brief description of each…

BUS BUSY

The ELM322 tried to send the mode command or
request for about 0.5 seconds without success.
Messages are all assigned priorities, which allows
one message to take precedence over another.
More important things may have been going on, so
try re-issuing your request.

BUS ERROR

An attempt was made to send a message, and the
data bus voltage did not change as expected. This is
most likely because of a circuit problem (a short or
open), so check all of your wiring carefully.

<DATA ERROR

There was a problem with the data checksum (CRC
byte), indicating a data error in the line pointed to
(the ELM322 still shows you what it received). There
could have been a circuit problem, or a noise burst
which interfered, so try re-sending the request again.

DATA ERROR

The ELM322 expects at least four bytes for every
message, and less than that were received. This
may have been caused by the key being turned off,
or a loose connection, for example, or by receiving a
single byte header message when a three byte
header was expected. Any monitoring that was in
progress will have been aborted. Try turning the
display of headers on to see what was actually sent.

NO DATA

There was no response from the vehicle before a
timeout occurred. The mode requested may not be
supported, so the vehicle ignored you, or the timeout
value was set too short, or possibly the ignition key
was not turned to the ‘on’ position. Try issuing an 01
00 command to be sure that the vehicle is ready to
receive commands, and if that works, try adjusting
the timeout to a longer value with the Set Timeout
AT command.

?

This is the standard response for a misunderstood
command received on the RS232 bus. Usually it is
due to a typing mistake.

The ELM322 is quite capable of resetting
diagnostic trouble codes, as this only requires issuing
a mode 04 command. The consequences should
always be considered before sending it, however, as
more than the MIL (or ‘Check Engine’ lamp) will be
reset. In fact, issuing a mode 04 will:

- reset the number of trouble codes

- erase any diagnostic trouble codes

- erase any stored freeze frame data

- erase the DTC that initiated the freeze frame

- erase all oxygen sensor test data

- erase mode 06 and 07 test results

 Clearing of all of this information is not unique to
the ELM322, as it occurs whenever a scan tool is used
to reset your codes. Understand that the loss of this
data could cause your car to run poorly for a short time
while the system recalibrates itself.

To avoid inadvertently erasing stored information,

the SAE specifies that scan tools must verify that a
mode 04 is intended (“Are you sure?”) before actually
sending it to the vehicle, as all trouble code
information is immediately lost when the mode is sent.
Recall, though, that the ELM322 does not monitor the
content of messages, so it will not know to ask for
confirmation of the mode request – this would have to
be the duty of a software interface if one is written.

As stated, to actually erase diagnostic trouble
codes, one need only issue a mode 04 command. A
response of 44 from the vehicle indicates that the
mode request has been carried out, the information
erased, and the MIL turned off. Some vehicles may
require a special condition to occur (the ignition on but
the engine not running, etc.) before they will respond
to a mode 04 command.

That is all there is to clearing the codes. Once
again, be very careful not to inadvertently issue an 04!

ELM322

12 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Monitoring the Bus

Some vehicles use the OBD bus for information
transfer during normal vehicle operation, passing a
great deal of information over it. A lot can be learned if
you have the good fortune to connect to one of these
vehicles, and are able to decipher the contents of the
messages. By the same token, you can do a lot of
harm if you are careless, so be very careful.

To see how your vehicle uses the OBD bus, you
will have to enter one of the ELM322’s monitoring
modes. The simplest is the “Monitor All” mode, which
is entered into by sending the command AT MA from
your terminal program. Once received, the IC will
continually display any information it sees on the OBD
bus, regardless of transmitter or receiver addresses.

Monitoring modes can only be stopped by sending
something over the RS232 connection to the ELM322.
It is not critical what you send, as any single character
will interrupt the IC, returning it to the command mode
(waiting for an input). Note that the character you send
is discarded and has no effect on any subsequent
commands. The IC will always finish a task in progress
(printing a line, for example) before returning to wait
for input, so always wait for the prompt character (‘>’)
before continuing to issue other commands.

If the headers are not currently displayed, simply
typing ATMA shows only the contents of messages,
not the transmitter and receiver addresses. To show
who is sending to whom, you will need to first turn

headers on (AT H1) before beginning to monitor (AT
MA). Either way, you may end up with an
overwhelming amount of information that you may
want to filter, showing only specific messages.

If, for example, you find that the engine controller’s
address seems to be 10, you may want to restrict the
data displayed to only messages from that ECU. To do
so, you would monitor only for messages transmitted
from address 10, by issuing AT MT 10 from your
terminal program. Only messages with 10 in the third
byte of the header will be displayed. Similarly, you may
wish to only see messages which are being received
by address 3B. To monitor for these, send AT MR 3B
and only messages with 3B as the second header byte
will be shown.

The ELM322 is somewhat limited in its monitoring
abilities, in that it does not have an internal buffer to
store OBD bus data which appears while a previous
message is being sent to the user. If the bus is very
active in your application, there is a chance that some
messages may be missed due to this inability to buffer
in the background. For this reason, you may want to
restrict the amount of RS232 data sent by using the
MR or MT commands, or using the ‘packed data’
mode. For most users, this limitation will not be
noticeable.

Computer Control – Using Packed Data

If a person is simply asking a vehicle for the
current Diagnostic Trouble Codes, speed is normally
not an issue, as data is displayed (essentially) as
quickly as it can be read. If interfaced to a computer,
however, speed may be important.

The packed data mode is a convenient means to
effectively triple the ELM322’s data transfer rate while
maintaining the connection at 9600 baud. Once
entered (with AT PD), all OBD messages will be
returned as a single length byte followed by the actual
data bytes. There are no space characters sent
between bytes, no carriage returns or linefeeds – the
data is retransmitted exactly as received from the
vehicle (except for the change to 9600 baud). While no
longer readable on a terminal, computers will
understand the information just the same, and will gain
speed through both reduced transfer and conversion
times. The ELM322 does not function any differently

when in this mode – if the headers are to be displayed,
they are sent, if in monitoring mode, data is continually
sent, etc. The only difference is in the format in which
the OBD responses are returned to the controlling
computer.

Often there is no response from the vehicle for a
particular request. When in the default (formatted data)
mode, this is shown with ‘NO DATA’ being printed, but
while in the packed data mode you will only receive a
single length byte of value 0 (zero).

While rare, errors may occasionally be detected in
the vehicle’s data. Normally, a ‘<DATA ERROR’ would
be printed for this, but in the Packed Data mode, the
checksum (CRC) errors are identified by setting the
most significant bit of the length byte. Because of this,
one should always check the length byte for a value of
128 or greater before processing the remainder of the
message.

ELM322

13 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Advanced Data Retrieval – Setting the Headers

Prior to v2.0, the ELM322 used a fixed format for
the message headers, allowing only for the retrieval of
the mandated diagnostic codes, not allowing the user
to change them. The IC is now fully programmable,
however, allowing the headers to be changed and a
great deal more information to be obtained, if your
vehicle supports it. Note that only the OBDII diagnostic
codes have been mandated, so there is no
requirement for all vehicles to support these extra
capabilities.

The diagnostic trouble codes that most people are
familiar with are described by SAE standard J1979
(ISO15031-5). This is really a specific instance of the
many modes allowed by the J2178-4 standard, which
provides for information transfer through what is
known as ‘functional addressing’. For the OBDII
mandated diagnostics, requests are actually made to
the functional address 6A, with whatever processor is
responsible for this function answering the request.
Theoretically many different processors can respond
to a single functional request, each contributing their
insight as to the information requested.

 To retrieve some of this extra information, the
function being addressed needs to be known. For
example, consider that you have studied the J2178
standards and want to request that the processor
responsible for Engine Coolant provide the current
Fluid Temperature. You determine that Engine Coolant
is functional address 48, you know that your address
as a scan tool is normally F1, and knowing that the
ELM322 does not generate In-Frame Responses (so
only supports message types 8 to 15), you choose A8
as the initial priority/type byte.

Combining the above, then, it is desirable to set
the three header bytes to A8 48 F1. This is done with
the Set Header command, which would be issued at
the prompt as follows:

>AT SH A8 48 F1

The three header bytes assigned in this manner
will stay in effect until changed with another AT SH
command, a reset, etc. If the default Auto Receive
mode has been selected, the receive address will
automatically be set to 49 (the second byte plus one).
This is consistent with the functional pairs assigned by
J2178-4. If you decide that this is not appropriate for
your case, you can always set the receive address to
what you wish using the AT SR command. For
example, if you wanted to obtain a response that is
being sent to address 6B instead, you would use AT

SR 6B to override the automatic receive mode. Any
receive address selected stays in effect until changed
by another AT SR, or reinstatement of the automatic
mode.

Having set the headers, all one needs to do is
issue the secondary ID for fluid temperature (10) at the
prompt. If the display of headers is turned off, the
conversation could typically look like this:

>10

10 2E

The response to ID 10 is the byte 2E, in this case.
You may find that some requests, being of a low
priority, may not be answered immediately, possibly
causing a ‘NO DATA’ result. In these cases, you may
want to adjust the timeout value, perhaps first trying
the maximum (with AT ST FF).

Using the physical addressing modes described
by the J2190 standard involves an almost identical
process. The main difference is that you must know
the physical address of the device that you want to
speak to. This address is always the third byte of a
message sent by that device, so can be determined by
monitoring the headers. Knowing that you wish to talk
to address 10, for example, that your physical address
is F1, and that for physical node to node addressing
EC may be appropriate for the first byte, you would
change the header bytes using AT SH EC 10 F1. If
Auto Receive is enabled, the receive address will
automatically be set to F1, your physical address (the
ELM322 knows to do this from the first byte). As
before, this header will remain in effect for every
message sent until changed to something else.

One caution to note with physical addressing.
There are modes which initiate the constant sending of
data, and if the ELM322’s timeout is set longer than
the duration between responses, the ELM322 may
return messages forever. In these cases, just like in
the monitoring modes, a single character will have to
be sent to interrupt the process.

Finally, please note that while we have provided
some information on the SAE standards for the
examples, Elm Electronics will only reply to requests
for clarification on our product’s operation, and not on
the standards. It is the customer’s responsibility to
obtain their own information on the relevant standards,
and on their vehicle. Requests to Elm Electronics for
this information will go unanswered.

ELM322

14 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

Quick Guide for Reading Trouble Codes

If you don’t use your ELM322 for some time, this
entire data sheet may seem like quite a bit to review if
your ‘Check Engine’ light does eventually come on.
The following provides a quick procedure which may
prove helpful in that case (note that the ‘>’ is the
ELM322’s prompt character):

ELM322

Connect using HyperTerminal, ZTerm, etc.,
9600 8N1, and no handshaking

Ignition Key to ON, but vehicle not running

>ATZ
to be sure the IC is reset and responding

>0100
to be sure the car is responding

>0101
to see how many codes are present
(look at the second digit of the 3rd byte)

>03
to see the codes
Ignore the first byte and read the others in
pairs. The table on page 10 helps.

>04
to reset the codes

FIX THE VEHICLE!

Example Applications

The SAE J1962 standard dictates that all OBD
compliant vehicles must provide a standard connector
near the driver’s seat, the shape and pinout of which is
shown in Figure 3 below. The circuitry described here
will be used to connect to this plug without modification
to your vehicle.

The male J1962 connector required to mate with a
vehicle’s connector may be difficult to obtain in some
locations, and you could be tempted to improvise by
making your own connections to the back of your
vehicle’s connector. If doing so, we recommend that
you do nothing which would compromise the integrity
of your vehicle’s OBD network. The use of any
connector which could easily short pins (such as an
RJ11 type telephone connector) would definitely not
be recommended.

The circuit of Figure 4 on the next page shows
how the ELM322 would typically be used. Circuit
power is obtained from the vehicle (OBD pins 16 and
5) and, after some minor filtering, is presented to a five
volt regulator. Notice that the common point of the
regulator is returned to vehicle ground through a diode
and an LED, effectively raising the circuit common
about 2.5 to 3 volts above that of the vehicle. This
gives a net 7.5 to 8 volt positive supply for the OBD
bus, as required by the standard (the ground signal
shown throughout the schematic refers to the circuit
common and not the vehicle’s chassis ground).

Note that by offsetting the regulator in this way,
the LED and the 750Ω resistor (which provides the
current for the LED) become critical components that
must not be eliminated. Also, one other subtle result of
this is that one must take care not to connect the
vehicle’s common to the computer’s common, as the
LED will be shorted out, reducing the supply to 5 volts
which is below the required level.

The remaining connection to the OBD bus (pin 2)
is the data line required for communications. Data is
transmitted onto the bus from the ELM322 via the PNP
transistor, the diode, and the 100Ω current limiting
resistor (which also provides moderate waveshaping).

The diode is needed to protect the circuitry from
currents which could flow through the transistor if there
were high voltages on the bus. Note that the 10KΩ
pulldown (loading) resistor returns to vehicle common,
providing the data bus with a full (7.5V) voltage swing.

Data is received from the OBD bus and level
shifted by the NPN transistor shown connected to pin
4 of the ELM322. Using a transistor this way forces the
logic transition point to be at about 3V (the voltage
drops of two diodes and an LED) with respect to
vehicle common. Had the input been directly
connected to pin 4, the threshold would have been
approximately 5 volts - much higher than the 3.5 volts
specified by the standard.

A very basic RS232 interface is shown connected
to pins 5 and 6 of the ELM322. This circuit ‘steals’
power from the host computer in order to provide a full
swing of the RS232 voltages, without the need for a
negative supply. The RS232 pin connections shown
are for a standard 9 pin connector. If you are using the
older 25 pin style, please refer to the web site help
pages for the equivalent pins.

RS232 data from the computer is directly
connected to pin 5 of the ELM322 through a 47KΩ
current limiting resistor. This resistor allows for voltage
swings in excess of the supply levels while preventing
damage to the ELM322. A single 100KΩ resistor is
also shown in this circuit so that pin 5 is not left floating
if the computer is disconnected.

Transmission of RS232 data is via the single PNP
transistor connected to pin 6. This transistor allows the
output voltage to swing between +5V and the negative
voltage stored on the 0.1µF capacitor (which is
charged to a negative voltage by the computer’s TxD
line). Although it is a simple circuit, it is quite effective
for this type of application.

Finally, the crystal shown connected between pins
2 and 3 is a common television type that can be easily
and inexpensively obtained. The 27pF crystal loading
capacitors shown are typical values only, and you may
have to select other values depending on what is
specified for the crystal you obtain.

This circuit is fully functional and complete as
shown, and has proven itself to also be quite reliable.
Offsetting the two circuit commons may be an
unconventional technique (and one of concern to
many people at first), but it does work very well in
practice.

Many people have written to us saying that their
application requires only one common throughout,

Figure 3. Vehicle Connector

15 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

81

9 16

ELM322

Figure 4. Typical OBD to RS232 Interface

16 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

‘Power On’
LED

0.01µF

+5V

1

2

3

4

8

7

6

5
27pF

3.58MHz
27pF

4.7KΩ

10KΩ

+5V

4.7KΩ

10KΩ
+5V

78L05 +5V

750Ω0.47µF

2

(Bus +)

5

(Vehicle
Ground)

16

(Battery
Positive)

OBD
Interface

Notes: -

-

-

NPN transistor is a
2N3904 or similar

PNP transistors are
2N3906 or similar

Diodes are 1N4148,
or 1N4001, etc.

100Ω

ELM322

2 (RxD)

5 (SG)

3 (TxD)
47KΩ

100KΩ

0.1µF

RS232
Interface
(DB9F)

4.7KΩ
10KΩ

1 (DCD)

4 (DTR)

6 (DSR)

7 (RTS)

8 (CTS)

+5V

Example Applications (cont’d)

17 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

however, and ask for recommendations on how they
might accomplish this. Often, they are interfacing to
other circuits on a vehicle, or wish to connect directly
to a microprocessor, and the different levels that the
commons are at are complicating their design. They
ask for suggestions as to how they might be able to
provide a consistent common throughout.

The circuit of Figure 5 shows one possible way of
doing this. It is slightly more complicated than the one
of Figure 4, but performs very well.

This circuit uses two voltage regulators in order to
create both the 5V needed for the logic, and the 8V
needed for the vehicle interface. Actually, the J1850
specification says the output level should be between
6.25V and 8V, so when the transistor and diode drops
are taken into account, an 8V supply is ideal. It is
recommended that you use an ‘L’ series regulator for
the OBD output supply (ie. a 78L08 as shown), since it
will limit the short-circuit current to a low level, should
there be problems with the vehicle’s wiring.

The OBD output circuitry of Figure 5 looks very
similar to that of Figure 4, except that an additional
NPN transistor has been added in series between pin
7 and the PNP transistor. This series NPN transistor is
used to convert the ELM322’s 0V to 5V output swing
to a current which then controls the PNP output
transistor. This configuration (or something similar) is
needed to protect the ELM322 from the 8V, which
would damage it.

The OBD input circuitry shown is very similar to
that of Figure 4. Note that an NPN is again used as the
input device, so that current can only flow into the
receive circuitry, not out of it. If a PNP transistor had
been chosen, its base current might conceivably be
seen as a false active level on some vehicles, which
could tie up the OBD bus, and lead to problems.

The only change between this input circuit, and
the previous one is the addition of a 2.0KΩ resistor
from the base to the emitter of the NPN transistor. This
resistor works with the 10KΩ resistor to form a voltage
divider, raising the input threshold voltage to about 3V,
which is almost identical to that provided by the offset
common of Figure 4. A threshold level of about 3V to
to 4V is necessary so that vehicle noise does not
cause false inputs to the ELM322.

These are the significant differences between the
two interface circuits. There are always many ways of
accomplishing the same thing, and in this case we
have presented two of them for you. They are by no
means the only ways of using the ELM322 - you

should experiment with your own ideas.
While discussing common questions, another one

that is often asked concerns interfacing the ELM322
directly to other logic circuits, without using any
RS232 circuitry. Certainly you can, and are
encouraged to do so. The ELM322 is simply a 5V
CMOS circuit that has plenty of drive capability, and so
can be directly connected to most logic families
without problems. The one difficulty that some people
occasionally encounter is associated with the input
level/polarity at pin 5. The ELM322’s RS232 Rx input
should normally be at VSS (0V) when idle, which is the
opposite to what is usually found with serial (UART)
interfaces. In order to compensate for the ELM322’s
inversion, you need to either make provisions for it in
your software, or else add an external inverter circuit.
If adding and external circuit, it need only be as
simple as the NPN transistor and three resistors
shown for pin 4 (but you might substitute a 10KΩ
resistor for the 2KΩ resistor that is shown). See our
web site help pages for more on this.

We hope that this has helped to provide some
insight and ideas for your design. While both circuits
are fairly simple, they are fully functional and will allow
you to do a great deal with an OBDII equipped vehicle.
As an experimenter, you may want to expand on
these, providing more protection from faults and
electrostatic discharge, or providing a different
interface for the RS232 connection to your computer
or PDA. Then perhaps a Basic program to make it
easier to talk to the vehicle, a method to log your
findings, a lookup table for trouble codes, and…

ELM322

Figure 5. Another Possible Configuration

18 of 18ELM322DSF Elm Electronics – Circuits for the Hobbyist
< http://www.elmelectronics.com/ >

0.01µF

+5V

1

2

3

4

8

7

6

527pF

3.58MHz
27pF

2.0KΩ

4.7KΩ

10KΩ

78L05 +5V

0.47µF

2

(Bus +)

5

(Vehicle
Ground)

16

(Battery
Positive)

OBD
Interface

Notes: -

-

-

NPN transistors are
2N3904 or similar

PNP transistors are
2N3906 or similar

Diodes are 1N4148,
or 1N4001, etc.

100Ω

78L08
+8V

+5V

4.7KΩ

+5V

10KΩ

‘Power On’
LED

750Ω

+5V

ELM322

2 (RxD)

5 (SG)

3 (TxD)
47KΩ

100KΩ

0.1µF

RS232
Interface
(DB9F)

4.7KΩ

10KΩ

1 (DCD)

4 (DTR)

6 (DSR)

7 (RTS)

8 (CTS)

+5V

